99mTc-ENS Ventilation Scintigraphy: Preliminary Study in Human Volunteers

G. Calmanovici,1 J. Boccio,1 C. Goldman,1 A. Hager,2 T. De Paoli,2 M. Alak,3 O. Degrossi,3 H. García del Río,3 J. Nicolini,4 R. Caro1 and M. Zubillaga1

1Radioisotope Laboratory, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina; 2Physics Department, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina; 3Argentine Institute of Diagnosis and Treatment, Buenos Aires, Argentina; and 4Bacon Laboratories, Buenos Aires, Argentina

ABSTRACT. Exogenous natural surfactant (ENS) labeled with 99mTc (99mTc-ENS, 900–1110 MBq), a new radiopharmaceutical for ventilation scintigraphy, was nebulized during 3 min to five volunteers. For comparative purposes, 99mTc-diethylenetriamine pentaacetic acid (DTPA) was studied in the same way. 99mTc-ENS images were of at least the same quality as 99mTc-DTPA images. However, in smoking volunteers, the 99mTc-DTPA images show some areas that seemed to be not well-ventilated, although these areas appeared well-ventilated when the study was performed with 99mTc-ENS. These results suggest that 99mTc-ENS can be used for ventilation scintigraphy to allow the observation of some areas that cannot been visualized using 99mTc-DTPA as ventilation agent.

INTRODUCTION

Aerosol lung scintigraphy is a very important tool for the diagnosis of pulmonary thromboembolism (10, 13, 14, 19) as well as other ventilatory related abnormalities (3, 9). Several agents can be used for this scintigraphic study. Each nuclear medicine center chooses an agent according to an analysis of the advantages, disadvantages, and functional information given by each ventilatory radiopharmaceutical. The various agents currently in use for ventilation scintigraphy are still being studied so as to determine the optimal radiopharmaceutical. 133Xe, 81mKr, and 99mTc-labeled aerosols are the most widely used radiopharmaceuticals for ventilation scintigraphy. The drawbacks of 133Xe and 81mKr are well known (2, 16, 17). Technegas® is being used for ventilation scintigraphy in several countries (11, 15). However, nuclear medicine centers in developing countries cannot afford to purchase the Technegas equipment. In Argentina, as well as in other developing nations, 133Xe and 81mKr are well known (2, 16, 17). 99mTc-ENS can be used for ventilation scintigraphy to allow the observation of some areas that cannot been visualized using 99mTc-DTPA as ventilation agent.

KEY WORDS. Ventilation scintigraphy; 99mTc-ENS; Surfactant; Lung; 99mTc

MATERIALS AND METHODS

Study Population

The Ethical Committee of the Argentine Institute of Diagnosis and Treatment approved the study according to the 1964 Declaration of Helsinki. All persons gave informed consent prior to inclusion in the study. Five healthy asymptomatic volunteers (two men, three women) between the ages of 25 and 58 years were studied. Two volunteers were smokers who smoked between 10 and 20 cigarettes per day; the rest were nonsmokers.

Procedure

99mTcO4− was eluted from a molybdenum generator (Bacon Laboratories, Ultra-Technekow FM, Argentina; activity: 3,700 MBq) as sodium pertechnetate, which was used for labeling the radiopharmaceuticals.

To obtain the 99mTc-ENS, 2.5 mg of freeze-dried ENS (freeze-dried Baby Fact P/GEMEPE SA, Argentina) (5) were labeled with 99mTc (99mTc-ENS, 4–6). Previous studies demonstrated that the labeling yield percentages obtained for 99mTc-ENS were always >95% (5, 6). The percentage of activity concentration found in lungs for 99mTc-ENS was >98% in previous studies performed in an animal model (4, 5), indicating the high specificity of this radiopharmaceutical for the lungs. We present here the results of the first study in human volunteers of 99mTc-ENS as ventilation agent.

Address correspondence to: Gabriela Calmanovici, Biochemist, Radioisotope Laboratory, School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, 1113-Buenos Aires, Argentina; e-mail: gcalmano@huemul.ffyb.uba.ar.

Received 6 March 1999.
Accepted 20 November 1999.
nebulizer to be administered to the volunteers in 3 min ventilation time. In both cases quality control of the radiopharmaceutical was performed by an ascending paper chromatography using acetone (Merck, Germany) as solvent (5–7).

Image Acquisition

The images were obtained with a single photon emission computed tomography camera (Siemens Diacam, USA) connected to a computer (Graphic Series G800, ViewSonic, USA). The computer program used was ICON 7.1 (Siemens, USA). Counts were accumulated up to 100 Kc. Images were acquired 5 and 15 min after the nebulization procedure for each radiopharmaceutical. They were compared by two independent experienced nuclear medicine observers in a blind test analysis and classified according to image quality.

Results obtained for acquisition times are given as mean ± SD

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>S</th>
<th>99m Tc-ENS</th>
<th>99m Tc-DTPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>N</td>
<td>1,014 MBq</td>
<td>1,003 MBq</td>
</tr>
<tr>
<td>a2</td>
<td>N</td>
<td>936 MBq</td>
<td>999 MBq</td>
</tr>
<tr>
<td>a3</td>
<td>N</td>
<td>1,129 MBq</td>
<td>1,047 MBq</td>
</tr>
<tr>
<td>a4</td>
<td>Y</td>
<td>1,110 MBq</td>
<td>1,099 MBq</td>
</tr>
<tr>
<td>a5</td>
<td>Y</td>
<td>1,043 MBq</td>
<td>999 MBq</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>1,046 MBq</td>
<td>1,029 MBq</td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td>78 MBq</td>
<td>44 MBq</td>
</tr>
</tbody>
</table>

Acquisition times 5 and 15 are the acquisition times for the images acquired 5 min and 15 min after the nebulization procedure, respectively.

*Male; †female.

S, smoker, N, no; Y, yes; Adm Act, administered activity; ENS, exogenous natural surfactant; DTPA, diethylenetriamine pentaacetic acid.

Table 1. Individual Data and Mean ± SD for the Administered Activity and the Acquisition Times for the Images Obtained with *99m* Tc-ENS and *99m* Tc-DTPA

FIG. 1. Images of a nonsmoking volunteer (volunteer no. 2) 5 and 15 min after the nebulization of (A) 936 MBq of exogenous natural surfactant labeled with *99m* Tc-ENS and (B) 999 MBq of *99m* Tc-diethylenetriamine pentaacetic acid (DTPA). Nebulization time: 3 min.
RESULTS

The labeling yield percentages were always >99% for 99mTc-ENS as well as for 99mTc-DTPA.

In Table 1 the individual data as well as the mean ± SD for the administered activity and acquisition times for each radiopharmaceutical are shown. There was no significant difference between the acquisition times for the images obtained with each radiopharmaceutical 5 and 15 min after the nebulization procedure.

Figure 1 shows the images obtained with 99mTc-ENS (Fig. 1A) and 99mTc-DTPA (Fig. 1B) for an healthy, asymptomatic nonsmoking volunteer. It can be observed that the images obtained for 99mTc-ENS were of at least the same quality as those obtained with 99mTc-DTPA. In the rest of the healthy, asymptomatic nonsmoking volunteers the images were similar to the ones shown in Figure 1. The images for a healthy, asymptomatic smoking volunteer are shown in Figure 2. It can be observed that the images obtained for 99mTc-ENS were of at least the same quality as those obtained with 99mTc-DTPA. In the rest of the healthy, asymptomatic nonsmoking volunteers the images were similar to those shown in Figure 1. The images for a healthy, asymptomatic smoking volunteer are shown in Figure 2. It can be observed that the images obtained for 99mTc-ENS were of at least the same quality as those obtained with 99mTc-DTPA.

DISCUSSION

99mTc-ENS was evaluated as an agent for ventilation scintigraphy compared with 99mTc-DTPA. The images obtained with this new radiopharmaceutical were of at least the same quality as the 99mTc-DTPA images with homogenous distribution patterns (Figs. 1 and 2) and a reasonable acquisition time (Table 1). In Figure 1 it can be observed that there was no difference between radiopharmaceuticals in asymptomatic nonsmoking volunteers. Alternatively, in healthy, asymptomatic smoking volunteers, there are some areas in the 99mTc-DTPA images that seem to be not well-ventilated (Fig. 2B), whereas when 99mTc-ENS was used these areas appear well-ventilated (Fig. 2A). This is more evident in the 15-min images. This can be explained by the fact that 99mTc-DTPA clearance is increased in smokers as well as in patients with other abnormalities in which the alveolar-blood membrane is injured (1, 12, 18), whereas 99mTc-ENS remains in the lung for at least for 30 min after the nebulization procedure, as has been demonstrated in animal studies (5, 6). This may be due to the incorporation of ENS into the surfactant layer that lines the alveoli. These results suggest that in smokers it is quite difficult to diagnose ventilatory related abnormalities or pulmonary thromboembolism, because areas with increased 99mTc-DTPA clearance can be confused with areas that are not well-ventilated. Conversely, when 99mTc-ENS is used as ventilatory agent, these areas appeared well-ventilated, which seems to confirm the specificity of this radiopharmaceutical for the alveolar surfactant layer.
Another important point to consider is the time between the nebulization procedure and the image acquisition. When the image is not acquired immediately after the nebulization in a smoking volunteer, the quality of 99mTc-DTPA images is not the same as that obtained immediately after the nebulization. This can be observed comparing the 5 and 15 min images (Fig. 2B). On the other hand, 99mTc-ENS image quality was the same whether it was acquired 5 min or 15 min after the nebulization procedure (Fig. 2A). Moreover, the percentage of activity concentration in the lungs of rats 30 min after nebulization of 99mTc-ENS was $>90\%$ (5, 6), suggesting that the image can be taken at least 30 min after this procedure without any loss of quality.

Studies in several patients with different pathologies using 99mTc-ENS as a ventilation agent are currently being performed. The results of these studies will be shown in future studies.

CONCLUSION

99mTc-ENS can be used successfully for ventilation scintigraphy. The results obtained suggest that it would be especially useful when the alveolar-blood barrier is injured such as it is smokers. In these cases it is very difficult to diagnose a ventilatory related abnormality or pulmonary thromboembolism using 99mTc-DTPA as a ventilation agent because areas with increased 99mTc-DTPA clearance are confused with areas that are not well-ventilated. In the case of 99mTc-ENS this problem is not observed.

References