99mTc-ENS vs. 99mTc-DTPA as Aerosol Lung Scintiscanning Agents.

Article N° AJ24-3

Correspondence:
(#) author to whom the mailing should be sent. mzubi@ffyb.uba.ar

Cita/Reference:

Introduction

In previous studies exogenous natural surfactant labeled with 99mTc (99mTc-ENS) and diethyleneetriaminepentaacetic labeled with 99mTc (99mTc-DTPA) were compared in animals(1) and human volunteers (2), demonstrating that 99mTc-ENS has a higher lung specificity than 99mTc-DTPA and that the immediate images obtained with 99mTc-ENS have a similar quality as those obtained with 99mTc-DTPA. In the present study we compare 99mTc-ENS and 99mTc-DTPA on one healthy volunteer to evaluate the kinetics of lung uptake with other radiopharmaceutical as well as lung images taken at different times.

Key words: Ventilation scintigraphy, 99mTc-ENS, Lung tromboembolism.

Materials and Methods

An Elanit SPECT SPX gamma camera with the usual settings for 99mTc was used. One healthy non-smoker female volunteer, having signed a written consent in terms of the Helsinki declaration, was nebulized for 5 minutes with 1.11 GBq (30 mCi) of 99mTc-DTPA, the radiochemical purity of which was checked by a previously described method(3). A new (unused) nebulizer (Swirlert™ from Amici) was used with a pressure of 9 Bars and a volume of 3 ml of the radiopharmaceutical. During the nebulization, lung uptake kinetic data were taken continuously with the patient under the camera and the obtained count rates were processed by means of linear and non-linear regression analysis. Immediately lungs, kidneys and bladder images were taken together with the count rate of each organ. The images and count rates of the same organs were taken also at 3 and 24 hours. After one week, in order to avoid cross
contamination or any interference, the same procedure using a new (unused) nebulizer (Swirler™ from Amici) was used to obtain the same data for 99mTc-ENS, the radiochemical purity of which was checked by a previously described method(4).

Results and Discussion

For the same nebulized activity, the left and right lung count rates are higher in the case of 99mTc-ENS than for 99mTc-DTPA at any of the studied times. The regression analysis of the left and right lung count rates vs. time curves for the initial 5 minutes, for 99mTc-ENS fits linearity ($r^2 = 0.9942$ and 0.9930, respectively), being compatible with a first order kinetics, which can be explained as being due to the incorporation of ENS into the surfactant that lines the alveoli (5). In the case of 99mTc-DTPA, the curve could not be fitted into a linear regression but into an hyperbolic michaelian equation of count rate (A) vs. time (t) of the type $A = [A_{max} \cdot t] / (K + t)$, in which A_{max} is the maximal count rate and K is the concentration required to obtain half of A_{max}, r^2 being 0.9793 and 0.9801 for left and right lungs respectively. In this case the lungs may be considered to be a transit compartment, since uptake and clearance are taking place at the same time. Preliminary non published results in rats show a similar kinetic pattern.

Figure 1 shows the aerosol lung scintiscans carried out with 99mTc-ENS and 99mTc-DTPA at 5 minutes, 3 hours and 24 hours after nebulization. The figure also shows a scan of the lower lung portion, kidneys and bladder 3 hours after the nebulization of either radiopharmaceutical showing that the image obtained at 3 hours with 99mTc-DTPA has considerable activity in the bladder, which is not the case with 99mTc-ENS. The kidney radioactivity at 3 hours is 1.61 times higher for 99mTc-DTPA than for 99mTc-ENS.

Table 1 shows the actual mean count rates of both lungs as a function of time for 99mTc-ENS and 99mTc-DTPA. R is the ratio of the actual mean count rate with regard to this value obtained at 5 minutes for either radiopharmaceutical. R gives an estimation of the effective clearance of the radioactivity from the lungs for either radiopharmaceutical.
Figure 1: Lung images obtained with 99mTc-DTPA and 99mTc-ENS at: a) 5 minutes; b) 3 hours; c) 24 hours and d) base of the lungs, kidneys and bladder images obtained with 99mTc-DTPA and 99mTc-ENS at 3 hours.

Table 1

Count rates vs. time for 99mTc-ENS and 99mTc-DTPA

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Counts (cpm)</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>130348</td>
<td>1.000</td>
</tr>
<tr>
<td>180</td>
<td>79234</td>
<td>0.608</td>
</tr>
<tr>
<td>1440</td>
<td>4704</td>
<td>0.036</td>
</tr>
</tbody>
</table>

http://www2.alasbimnjournal.cl/alasbimn/CDA/imprime/0,1208,PRT%3D6271,00.html

5/10/2007
Our results demonstrate that the 99mTc-ENS image at 5 minutes exhibits a more homogeneous lung distribution pattern than that obtained with 99mTc-DTPA, which shows a higher activity concentration in the base of the lungs. 99mTc-ENS count rate at 5 minutes after administration is 1.78 times the count rate obtained with 99mTc-DTPA. On the same account, the relationship between the R values 3 hours after nebulization is 4, whereas at 24 hours it is 12. This indicates a longer lung persistence of 99mTc-ENS, which allows that patients in intensive care units may be analyzed some time after nebulization. At the same time these results demonstrate that this radiopharmaceutical would allow a shorter nebulization time, which is especially important in non-cooperative patients and children. It is also important to point out that 99mTc-ENS exhibited a much lower count rate in the higher airways (trachea and bronchi) than 99mTc-DTPA. Aerosol lung scintiscanning is an important diagnostic procedure for lung tromboembolism, which requires a second i.v. administration of 99mTc labeled macroaggregates, the image obtained with which does not interfere with the previous aerosol image, as the injected activity is much higher. Since patients in this condition may often have difficulties being nebulized, it would be interesting to carry out further work in order to collect statistical information confirming that 99mTc-ENS can improve this diagnostic study.

References

3. European Pharmacopoeia, 1997. Technetium (99mTc) pentoate injection 1602-1603

<button onclick="window.location.href='http://www2.alasbimnjournal.cl/alasbimn/CDA/imprime/0,1208,PRT%3D6271,00.html'">Sitio desarrollado por SISIB - Universidad de Chile</button>
Lung ventilation images of the same person comparing Tc99m-DTPA to Tc99m-ENS using the Swirler Aerosol System.